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The boundary conditions used to represent macroscopic-gradient-related effects in
arbitrary geometries with the lattice Boltzmann methods need a trade-off between the
complexity of the scheme, due to the loss of localness and the difficulties for directly apply-
ing link-based approaches, and the accuracy obtained. A generalization of the momentum
transfer boundary condition is presented, in which the arbitrary location of the boundary is
addressed with link-wise interpolation (used for Dirichlet conditions) and the macroscopic
gradient is taken into account with a finite-difference scheme. This leads to a stable
approach for arbitrary geometries that can be used to impose Neumann and Robin bound-
ary conditions. The proposal is validated for stress boundary conditions at walls. Two-
dimensional steady and unsteady configurations are used as test case: partial-slip flow
between two infinite plates and the slip flow past a circular cylinder.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Lattice Boltzmann (LB) methods [1–4] are an efficient approach to simulate fluid flow based on the solution of the Boltz-
mann equation with a minimal discretization of the velocity space [5]. One of its strengths is the ability to simulate complex
geometries with little additional computational effort. Simulations with detailed geometries of porous media [6], blood ves-
sels [7], indoor environments [8] or flow aerodynamics [9] are some successful examples. Different implementations of
Dirichlet conditions for arbitrary geometries have been developed; however, little research has been published related to
the implementation of Neumann boundary conditions. This deficit is probably due to several factors, which can be illustrated
using the stress boundary-condition as an example. First, the stresses are macroscopic moments related to the non-equilib-
rium part of the distribution functions that have an Oð@juiÞ influence on the accuracy of the boundary condition, which is
sometimes neglected; additionally, many configurations do not require these kind of boundary conditions, and in the most
common case where it is needed (i.e. zero tangential stresses for symmetry planes) the link-based approach can be applied
through a specular reflection; furthermore, it is a hydrodynamic boundary condition, and kinetic ones are often preferred
(especially for microflows). The use of Neumann conditions would allow to extend the applicability of the lattice Boltzmann
method by prescribing, for example, effects related to @jui (e.g. stress over a porous wall, wall models for turbulent flows,
hydrophobic-hydrophilic wall treatments) and to reduce the complexity of the domain (e.g. symmetry axis).

In the following, the evolution of the implementation of boundary conditions in lattice Boltzmann methods is reviewed to
serve as a basis for the evaluation of the best way to implement Neumann conditions. In this discussion, only macroscopic
boundary conditions for the momentum equations are considered. However, the conclusions presented can be extended to
any other macroscopic variable.
. All rights reserved.
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The first approach to model walls in LB is the use of the bounce-back scheme (see, for example, [10]) for the non-slip con-
dition, and the application of a specular reflection for the complete slip or zero-stress one. From this straightforward approach
it is possible to observe the obvious relationship between the stress at the wall, the wall collision, and the slip condition.

With the bounce-back scheme as the starting point, two pieces of work elaborated on improved boundary conditions for
LB. One of them established the influence of the relaxation parameters on the wall location [11] and the other studied the
influence of the definition of the non-equilibrium part of the distribution functions on wall (and initial) conditions [12]. Also
relevant to the present discussion are some further papers describing alternative approaches to improve the accuracy of the
bounce-back boundary condition considering different lattices (e.g. [13–16]).

A first work on including arbitrary geometries was the one by Ginzbourg and d’Humières [17] for a Poiseuille flow in in-
clined channels. Filippova and Hänel [18] developed an approach for dealing with complex geometries based on modifica-
tions to the bounce-back procedure using interpolation; this approach was improved by Mei et al. [19] and [20], and
generalized by Ginzburg et al. [21,22]. Another approach to simulate curved geometries is based on the volumetric scheme
by Chen et al. [23], that has also been improved upon [24]. The work by Verberg and Ladd [25] can be considered a different
way to impose volumetric boundary conditions. One further approach is the extrapolation proposed by Chen et al. [26] and
extended to curved geometries by Guo et al. [27]. Two additional concepts have been introduced, related to local boundary
conditions [17,28,29], and immersed boundary conditions for lattice Boltzmann methods [30].

The development of Neumann boundary treatments in LB largely focuses on the definition of slip boundaries, or stress-
related conditions, as they are linked to the development of wall boundary-conditions for microflows [31–33]. Although the
use of kinetic boundary conditions to impose a pre-defined stresses has been attempted for planar walls, no satisfactory re-
sult has been obtained in curved geometries, for which their application becomes complex or impossible [32,34].

Some attempts to simulate configurations which need Neumann conditions can be found in the literature [35,34]. The
best-suited hydrodynamic approach for setting Neumann conditions at boundaries, even with complex geometries, is often
claimed to be the volumetric approach by Chen et al. [23].

The preceding review of boundary conditions for lattice Boltzmann methods provide some guidelines for an efficient
implementation of Neumann boundary conditions. Thus, any method proposed should: (i) preserve the simplicity and good
stability behavior of bounce-back-based schemes; (ii) be second-order (or higher) for arbitrary geometries; (iii) avoid the use
of extrapolations related to hydrodynamic treatments [26]; and (iv) avoid the use of non-lattice distribution functions as in
kinetic methods with non-zero off-diagonal kernels [31,36].

The approach presented here treats the problem in a general efficient way preserving well-established boundary treat-
ments [22] and including macroscopic-gradients with a low degree of added complexity. It is a practical approximation to
solve the problem that can be formulated in a modular way to introduce improvements that do not change the basic structure.

The paper is organized as follows. Section 2 briefly describes the multi-relaxation-times (MRT) lattice Boltzmann method
used to test the boundary treatment proposed. In Section 3 the implementation of gradient-based boundary conditions is
introduced. In Section 4 results for different test cases are presented. Finally, (Section 5), some conclusions from the results
and an outline of possible applications are discussed.
2. The lattice Boltzmann method

The approach to boundary treatment presented in this paper is independent of the lattice Boltzmann method used. How-
ever, we choose an MRT lattice Boltzmann method [37] because the access to a larger number of relaxation factors allows to
improve the stability of the method, and to influence the accuracy of the boundary conditions.

A two dimensional (D2Q9) method with nine velocities ei ¼ ðexa; eyaÞ with exa ¼ ð0;1;0;�1;0;1;�1;�1;1Þ and
eya ¼ ð0;0;1;0;�1;1;1;�1;�1Þ, is used. The velocity distribution functions f � fa 2 R9 evolve according to nine velocities
in a two dimensional lattice of nodes xi 2 Z2. The evolution equation for f is:
fðxi þ eidt; t þ dtÞ � fðxi; tÞ ¼ �M�1 � S � ½mðxi; tÞ �meqðxi; tÞ� þ Fðxi; tÞ; ð1Þ
where the lower-case-bold symbols, f and m, denote transpose 9-dimensional vectors; M is the transformation matrix that
linearly relates velocity distribution functions and moments: f ¼M�1 �m and m ¼M � f; m ¼ ðq; e; �;qux; qx;quy; qy; pxx; pxyÞ

T

are the macroscopic moments and meq their equilibrium values; S ¼ diagð0; se; s�;0; sa;0; sa; sm; smÞ is a diagonal matrix of
relaxation factors, where sm is related to the viscosity; cs is the speed of sound, and wa ¼ ð4=9;1=9;1=9;1=9;1=9;1=36;
1=36;1=36;1=36Þ are the weighting coefficients for each velocity. F � Fa ¼ 1=c2

s waq0dtðeiaaiÞ is an external body force, ai

being the acceleration induced by this force. Additional details about the definition of body forces and their influence on
momentum are discussed, for example, in [38]. Further information about the method can be found in the work by Lalle-
mand and Luo [39]. Essentially, we work with a simplified version of the MRT collision operator with only two relaxation
times (TRT) [40–43,22,44]. For this case se ¼ s� ¼ sm and sa is related to sm in order to reduce errors at the boundary in a
way which varies depending on the interpolation scheme used. Unless otherwise indicated, we will take sa ¼ 8ð2� smÞ=
ð8� smÞ [21,22].

Applying a Chapman-Enskog expansion to Eq. (1) the Navier–Stokes equations are recovered in the limit of low Kn and
low Ma numbers, with q ¼

P
afa and qui ¼

P
aðeiafaÞ þ Fi=2. The fluid viscosity is related to sm as: m ¼ c2

s ð1=sm � 1=2Þ. A speed
of sound cs ¼ 1=

ffiffiffi
3
p

is considered hereafter.
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3. Gradient-based boundary conditions

Following the desirable properties detailed above, the present proposal is based on: (i) An interpolation scheme to set
Dirichlet boundary-conditions for arbitrary walls. For first- and second-order approximations the scheme by Bouzidi et al.
[20] can be applied. For higher-order approximations the multireflection boundary condition by Ginzburg and d’Humières
[21] should be used. For a generalized approach the work by Ginzburg et al. [22] can be consulted. (ii) A pre-defined stencil
for the derivative of the macroscopic variable. The stencil can use non-lattice values obtained by interpolating macroscopic
quantities computed on the lattice.

This boundary treatment is described in the following for velocity-gradient conditions. The terminology by Ginzburg et al.
[22] is followed to define the different interpolation schemes applied.

Some definitions, used to simplify the description of these schemes, are introduced next. The equilibrium distribution
function can be split in a symmetric:
f eqþ
a ¼ xaqþ

9
2
xaq0 ðea � uÞ2 �

1
3
ðu � uÞ

� �
; ð2Þ
and an anti-symmetric part:
f eq�
a ¼ 3xaq0ðea � uÞ: ð3Þ
A similar description is used for distribution functions fa ¼ fþa þ f�a , the components of which are defined as:
fþa ¼
1
2
ðfa þ f�aÞ; ð4Þ

f�a ¼
1
2
ðfa � f�aÞ; ð5Þ
where �a is the direction opposite to a in a link.
The non-equilibrium distribution function are then computed as:
f neqþ
a ¼ fþa � f eqþ

a ; ð6Þ
f neq�
a ¼ f�a � f eq�

a : ð7Þ
3.1. Velocity-gradient boundary condition

The distribution function in Dirichlet-velocity boundaries (see Fig. 1) can be generically computed through three terms
[22]:
f�aðxf ; t þ 1Þ ¼ RðuÞa ðxf ; tÞ þ Fp:c:ðuÞ
a ðxf ; tÞ þW ðuÞ

a ðxb; t̂Þ; ð8Þ
where RðuÞa ðxf ; tÞ is the interpolation scheme, Fp:c:ðuÞ
a ðxf ; tÞ is the error correction to match the desired accuracy derived from a

Chapman-Enskog expansion, and W ðuÞ
a ðxb; t̂Þ is the Dirichlet condition at the boundary xb and at a time t̂ ¼ t þ Dt, which

depends on the interpolation scheme applied. The time t̂ is the most appropriate time (after theoretical and numerical anal-
ysis of the boundary condition [22]) to impose a time-dependent boundary condition. Three interpolation schemes among
the possible ones are described next for completeness.
xh
u(xh)

n

xf+e t

xf

xb

xw

h

n

x

y

Fig. 1. Schematic view of the wall treatment including generic reference axis at the wall.
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3.1.1. Velocity bounce-back (BB)
The BB is the simplest scheme with the following terms:
RðuÞa ðxf ; tÞ ¼ ~f aðxf ; tÞ; ð9aÞ
Fp:c:ðuÞ

a ðxf ; tÞ ¼ 0; ð9bÞ
W ðuÞ

a ðxb; t̂Þ ¼ �2f eq�
a ðxb; t̂Þ; ð9cÞ
where ~f are post-collision distribution functions. For these cases da ¼ 1=2 for every boundary link, where da is defined as
da ¼ jxf � xbj=jxf � xwj (see Fig. 1); t̂ ¼ t þ 1=2; and the accuracy obtained is second order for the anti-symmetric part of
the distribution function (referred to as uð2Þ), and first order for the symmetric part (referred to as Pð1Þ).

3.1.2. Upwind/downwind linear interpolation (ULI/DLI)
The accuracy obtained with ULI/DLI is uð2Þ and Pð1Þ. The ULI [20,22] is used for 0 6 da 6 1=2:
RðuÞa ðxf ; tÞ ¼ 2da
~f aðxf ; tÞ þ ð1� 2daÞ~f aðxf þ e�adt; tÞ; ð10aÞ
Fp:c:ðuÞ
a ðxf ; tÞ ¼ 0; ð10bÞ

W ðuÞ
a ðxb; t̂Þ ¼ �2f eq�

a ðxb; t̂Þ; ð10cÞ
with t̂ ¼ t þ ð1� daÞ.
The DLI [20,22] is used for da P 1=2:
RðuÞa ðxf ; tÞ ¼
1

2da

~f aðxf ; tÞ þ
2da � 1

2da

~f �aðxf ; tÞ; ð11aÞ
Fp:c:ðuÞ
a ðxf ; tÞ ¼ 0; ð11bÞ

W ðuÞ
a ðxb; t̂Þ ¼ �

1
da

f eq�
a ðxb; t̂Þ; ð11cÞ
with t̂ ¼ t þ da.

3.1.3. Improved upwind/downwind linear interpolation (MGULI/MGDLI)
The MGULI/MGDLI is and improved ULI/DLI interpolation where OðuÞ errors are canceled through the Fp:c:ðuÞ

a term.
RðuÞa ;W ðuÞ

a ; t̂ and the ranges of applicability with regard to da remain as in ULI/DLI. For MGULI the corresponding correction
term reads:
Fp:c:ðuÞ
a ðxf ; tÞ ¼ �4 da �

1
2

� �
1� 1

sa

� �
; ð12Þ
and for MGDLI it is:
Fp:c:ðuÞ
a ðxf ; tÞ ¼ �

2
da

1
2
� da

� �
1� da

da
� 1

2sada

� �
; ð13Þ
This correction can be further improved by equalizing Oðu2Þ errors, leading to the MULI/MDLI scheme proposed in [22].

3.1.4. Derivative stencils
Velocity-gradient boundary conditions for the Navier–Stokes equations are directly related to the stress tensor, which in

two-dimensions is:
rij ¼
rnn rns

rsn rss

� �
¼

q0m
@un
@n � p q0m

@us
@n

q0m
@un
@s q0m

@us
@s � p

 !
: ð14Þ
When imposing Neumann or Robin conditions for the velocity at the boundaries special attention must be paid to ensure
that the full stress tensor is defined, including the pressure terms. In this work, Neumann and Robin conditions will be
applied to impervious walls (not in open boundaries) for two dimensional incompressible flows. Thus, only rns is relevant.
For a complete description of the initial and boundary value problem for the Navier–Stokes equations we refer to [45].

The finite-difference-derivative stencils for the velocity needed for computing the stress at walls are obtained from a
Taylor series expansion of the velocity around two points in the direction normal to the wall. Let these points be located
at a distance h1 and h2 from a boundary point xb; then, from a Taylor expansion up to the second order in h1 and h2:
usðxb þ h1Þ ¼ usðxbÞ þ h1
@us

@n
ðxbÞ þ

h2
1

2
@2us

@n2 ðxbÞ þ Oðh3
1Þ; ð15aÞ

usðxb þ h2Þ ¼ usðxbÞ þ h2
@us

@n
ðxbÞ þ

h2
2

2
@2us

@n2 ðxbÞ þ Oðh3
2Þ; ð15bÞ
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we can obtain expressions for the first and second-order derivatives:
@us

@n
ðxbÞ �

h2
1½usðxbÞ � usðxh2

Þ� þ h2
2½usðxh1

Þ � usðxbÞ�
h1h2ðh2 � h1Þ

; ð16aÞ

@2us

@n2 ðxbÞ �
2h1½usðxh2 Þ � usðxbÞ� þ 2h2½usðxbÞ � usðxh1 Þ�

h1h2ðh2 � h1Þ
; ð16bÞ
In this work, this approach is simplified by employing a first order stencil for the derivative of the wall-tangential velocity
us along the normal direction n. It is considered for this case that h1 ¼ h is the only point in the normal direction used to
compute the tangential stress (see Fig. 1 for nomenclature):
rnsðxbÞ ¼ q0m
@us

@n
ðxbÞ � q0m

usðxhÞ � usðxbÞ
h

; ð17Þ
where h ¼ dx for da < 0:5 and h ¼ 1:5dx da P 0:5. This is a somewhat arbitrary selection of h but it allows to compute usðxhÞ
within a region next to the wall where stable interpolation schemes can be applied. A bilinear interpolation of macroscopic
variables is used in this work because higher-order interpolations are not expected to generate better or more stable results
[46], and because other mixed interpolation techniques used in immersed boundary methods for the Navier–Stokes equa-
tions increase the complexity of the implementation [47]. The length h and the corresponding weights for the bilinear inter-
polation can be computed in a preprocessing, as it is usually done for da values. This preprocessing is performed only once for
stationary geometries.

The first order approximation assumes a linear profile of the stress, which makes it applicable to laminar flows and to
turbulent ones with enough resolution near the wall. Wherever this assumption is no longer valid (e.g. non-newtonian flu-
ids), higher-order stencils can be considered. Furthermore, for some special cases (e.g. turbulent flows with coarse near-wall
resolution [48] or even for microflows [49]) pre-defined velocity profiles, the so called wall laws, can be applied.

For the case of a Neumann boundary condition the velocity to be added to the wall to account for the imposed stresses,
considering Eq. (17), is:
q0m
@us

@n
ðxbÞ ¼ rnsðxbÞ ) usðxbÞ � usðxhÞ �

hrnsðxbÞ
q0m

: ð18Þ
When a Robin condition is applied, the equivalent wall-slip velocity is computed as:
usðxbÞ ¼ K
@us

@n
ðxbÞ ) usðxbÞ �

usðxhÞ
1þ h

KH

: ð19Þ
Finally, to introduce usðxbÞ into the momentum transfer correction equations, i.e. the Dirichlet term in Eq. (8), a change of
coordinates (by rotation) from (s,n) to (x,y) is needed:
uðxbÞ ¼ ðuxðxbÞ;uyðxbÞÞ ¼ usðxbÞs; ð20Þ
where s ¼ ðcosh;�sinhÞ according to coordinate systems in Fig. 1.

3.2. Corners and special boundaries

The term special boundaries is used here to refer to those which do not allow us to properly implement the boundary
condition desired. As this depends on the type of boundary condition, different considerations must be made for the mac-
roscopic-gradient-based conditions.

Since in the proposal presented above link-based schemes are applied to take into account arbitrary geometries, the same
considerations as in [22] can be made with links where not enough nodes are available in the link direction. If only nodes up
to xf þ e�adt are available, ~f aðxf þ 2e�adt; tÞ can be replaced with faðxf þ e�adt; t þ 1Þ. If only xf is available, it is possible to
switch to BB; or, if ~f aðxf þ e�adt; tÞ is replaced with faðxf ; t þ 1Þ, it is possible to switch to ULI/DLI. For corners, the bisectrix
can be used as the normal direction.

4. Test cases

Two test cases are used to validate the proposed new boundary-condition treatment: (i) the flow between two plates with
a partial-slip boundary-condition at walls, for both a Couette flow and a laminar channel; and (ii) the flow around a circular
cylinder with complete slip at walls. These test cases thus encompass the behavior in steady and unsteady flows, and with
planar and curved boundaries. Additionally, the evaluation of forces on objects is tested.

4.1. Flow between two plates with partial slip

The laminar two-dimensional steady state flow between two plates located at y ¼ 0 and y ¼ H is defined by the Navier–
Stokes equations without temporal or convective terms:
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0 ¼ � @p
@x
þ @

@y
q0m

@u
@y

� �
; ð21aÞ

0 ¼ @p
@y
: ð21bÞ
These equations are solved analytically for two different flows, i.e. Couette and Hagen-Poiseuille, with partial-slip bound-
ary-conditions.

4.1.1. Partial-slip Couette-flow
A Couette flow parallel to the x-axis is simulated, where the upper wall drives the flow with uðHÞ ¼ u0 and the lower wall

has a slip behavior defined by two alternative laws: Neumann, q0m@yuNð0Þ ¼ ryxðxbÞ; and Robin, uRð0Þ ¼ KH@yuðxbÞ . The BB
boundary condition Eq. (9c) is used for both walls, and periodic conditions are applied at the inlet and at the outlet. Solving
Eq. (21b) with these boundary conditions, the following solutions are obtained for the Neumann condition:
uNðyÞ ¼ u0 �
ryxðxbÞ
q0m

ðH � yÞ; ð22Þ
and for the Robin one:
uRðyÞ ¼
u0ðHK þ yÞ

H þ HK
: ð23Þ
The respective slip velocities us at the lower wall for both conditions are:
us ¼ uNð0Þ ¼ u0 �
HryxðxbÞ

q0m
; us ¼ uRð0Þ ¼

u0HK
H þ HK

: ð24Þ
Simulations to reproduce several slip velocities us at the lower wall are performed. The parameters for the Neumann and
Robin boundary conditions are computed from Eq. (24) for us ¼ 0;1=3;2=3 and 1. Results are plotted using normalized vari-
ables in Fig. 2, where they are also compared with the analytical solution Eqs. (22) and (23).

To validate the behavior of the boundary condition for unsteady simulations the time-dependent equation is solved for
the Couette flow with the boundary condition ryxðxbÞ ¼ 0 at the lower wall. A Laplace transform procedure is applied (see,
for example, [50]) to obtain the analytical solution:
uðy; tÞ ¼ u0 �
4u0

p
X1
n¼0

ð�1Þn

2nþ 1
exp �ð2nþ 1Þ2p2

4
mt

H2

 !
� cos

ð2nþ 1Þpy
2H

; ð25Þ
where the series are computed up to the n ¼ 1000th term to compare with the lattice Boltzmann results. The comparison is
shown in Fig. 3, for several dimensionless times T ¼ mt=H2. It can be seen that an increment in spatial resolution has a po-
sitive effect on the accuracy.
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4.1.2. Partial-slip channel
The laminar flow in a two-dimensional channel with partial-slip conditions is simulated. Eq. (21b) is solved here using a

Robin condition in the lower and upper wall, uð0Þ ¼ uðHÞ ¼ KH@yu, and with stream-wise periodic conditions. The analytical
solution is:
umax ¼ �
1

8q0m
dp
dx

H2ð1þ 4KÞ; ð26aÞ

uðyÞ ¼ umax
4ðH2K þ Hy� y2Þ

H2ð1þ 4KÞ
: ð26bÞ
In this case, the BB, ULI/DLI and MGULI/MGDLI schemes are used, with a first order stencil for the velocity derivative. The
flow is driven by a body force where the acceleration dp=dx is computed from Eq. (26a) for a prescribed Reynolds number
based on umax. The ULI/DLI and MGULI/MGDLI schemes allows to evaluate the behavior of the Robin condition for different da

values. In Fig. 4 the velocity profile for several da in the lower wall is shown (which implies 1� da in the upper one, as the
walls are parallel to the lattice), and compared with the analytical solution for the ULI/DLI scheme.

To test the influence of the interpolation scheme, the error obtained is plotted in Fig. 5 for the simulation of the channel
by applying BB, ULI/DLI and MGULI/MGDLI as described in Section 3.1. As a further improved interpolation scheme is used,
the effect of da in the error obtained is reduced (see Fig. 5 (left) ). The second-order approach for the velocity derivatives at
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the wall was also tested to numerically verify that for this flow it has no influence on the result. In Fig. 5 (right) it is observed
that all three methods exhibit a first-order accuracy; although second-order accuracy was expected for ULI/DLI and MGULI/
MGDLI, the implementation of the periodic boundary conditions together with the simplified driving force lead to first order
spatial convergence. Nevertheless, the positive feature of avoiding the effect of da on the solution is preserved. A more de-
tailed study of the accuracy of the method for this flow, as performed in [44], should include inlet and outlet boundary con-
ditions of the same order of accuracy as those used at the walls. Further details on the accuracy of these interpolation
schemes can be found in [22].

4.2. Slip flow past a cylinder

The two-dimensional flow around a circular cylinder with slip boundary conditions (rns ¼ 0) is used to validate
the scheme proposed to account for curved boundaries. For this validation the following definition of the drag coefficient
is used:
Cd ¼
Fd

1
2 q0u2

0D
: ð27Þ
The analytical and experimental expressions to validate the boundary condition proposed in this work are for the low-
Reynolds and low-Eotvos number regimes [51], which prevail, for instance, in the slow motion of bubbles in a liquid. An ana-
lytical analysis allows to recover the following expressions for very low Reynolds:
Cd ¼
16
Re
; ð28Þ
which is the drag coefficient for the Stokes flow [51]; and
Cd ¼
16
Re

1þ Re
8

� �
; ð29Þ
which is the Oseen correction for finite Reynolds [51]. For moderate Reynolds numbers Re > 2, the following expression can
be used [51]:
Cd ¼ 14:9Re�0:78; ð30Þ
and for high Reynolds numbers ðRe� 1Þ the Moore drag estimate is [51]:
Cd ¼
48
Re

1� 2:21
Re1=2

� �
: ð31Þ
The main characteristic of the flow around a cylinder or a sphere with total slip at boundaries is the absence of a recirculation
region downstream. The calculated flow around a two-dimensional cylinder is represented in Fig. 6, where streamlines and
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pressure isocontours are plotted. In Fig. 7 the evolution of the drag coefficient as a function of the Reynolds number obtained
by numerical simulations with the LB method is plotted and compared with Eqs. (28)–(31).

5. Conclusions

An approach to prescribe macroscopic-gradient boundary conditions in lattice Boltzmann methods, in which finite-differ-
ence stencils are use for macroscopic variables, has been introduced and validated.

The proposal to implement velocity-gradient conditions (i.e. stresses) is similar in concept to the treatment used in im-
merse boundary methods for Navier–Stokes equations [47,52]. Extensions of the method, not presented here, could include
boundary conditions for other variables related to velocity derivatives, such as vorticity, and also to pressure or scalar gra-
dients. Additionally, a nonreflecting formulation of this boundary condition is possible following the characteristic approach
applied in [53] for lattice Boltzmann methods.

The structure of the proposed scheme is flexible and it is applicable to the lattice Boltzmann equation with any collision
operator; additionally, the interpolation scheme for curved geometries can be switched to any other if the accuracy [22] or
the localness [54] need to be improved. The extension to three-dimensional flows is straightforward and it does not require
further considerations.
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